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Robust Statistics- How Not to Reject Outliers 

Part 1. Basic Concepts 

Analytical Methods Committee* 
Royal Society of Chemistry, Burlington House, Piccadilly, London W1 V OBN, UK 

The subject of outliers has been controversial whenever analytical data have been processed. Modern 
statistical theory provides an alternative to  outlier rejection, in which outlying observations are retained but 
given less weight. This approach is known as robust statistics and is beginning to find favour with analytical 
chemists. An introduction to  robust statistics is given and some examples are described. 
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Introduction 
Occasionally sets of analytical data occur in which a few 
observations appear discordant with the remainder. Such 
observations are known as outliers. For example, considering 
the following 24 determinations of copper (vgg-1) in 
wholemeal flour 

2.9 3.1 3.4 3.4 3.70 3.7 2.8 2.5 2.4 2.4 2.7 2.2 
5.28 3.37 3.03 3.03 28.95 3.77 3.4 2.2 3.5 3.6 3.7 3.7 ( l )  

one value, 28.95, stands out from the remainder. In this 
instance we may be particularly suspicious of the value, as a 
simple explanation suggests itself. Although recording and 
range errors are almost certainly the major cause of outliers, 
mistakes can also occur in many other parts of the analytical 
process and from contamination and transposition of spe- 
cimens. 

The almost universal practice amongst analytical chemists 
has been to regard outliers as errors, and to delete them from 
the set of data. In some circumstances this is plainly wrong, 
and in others there are much safer procedures. Why should we 
be interested in outliers? One good reason is to catch 
transcription errors while the original laboratory records are 
easily accessible. In such an instance we would want to check 
all the extreme results whether or not they are rejected by an 
outlier test (such as the tests of Dixonl or Grubbs2). The 
traditional procedure3 for dataset (1) would be to compute 
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Fig. 1. Two views of dataset (1) from the ctstistical package 
MINITAB. (a )  A dot plot; and ( b )  a box plot. * and 0, extreme 
observations; +. the median; and 0, the quantiles 

where x(l), ..., x(24) are the observations sorted into 
increasing order: 

2.2 2.2 2.4 2.4 2.5 2.7 2.8 2.9 3.03 3.03 3.1 3.37 
3.4 3.4 3.4 3.5 3.6 3.7 3.7 3.7 3.70 3.77 5.28 28.95 

and therefore reject x(24) = 28.95. For the remaining 23 
observations the Dixonl test statistic is 0.549, so ~ ( 2 3 )  = 5.28 
would also be rejected. Using the test yet again gives 0.133, 
this being judged not significant. Grubbs’ test gives the same 
results. 

The traditional procedure has the merit of pointing out the 
second outiier, 5.28, but this would have been obvious from 
any plot of the data (Fig. 1). The second-largest value will be 
significant (at 5 % )  only if it exceeds 4.80. However, surely we 
would want to check a value of 4.77 for a transcription error? 
If the purpose of detecting outliers is to check the values, it is 
their extremeness and the plausibility of simple explanations 
that should weigh in the decision, and not the statistical 
significance. 

Outlier rejection is positively wrong when included in a 
procedure to assess the variability of an analytical method. 
The outlier rejection procedure used above is that of BS54974; 
the illustrative dataset (1) is taken from a co-operative trial.5 
The mean and variance of the whole set are 4.28 and 28.1, 
respectively, whereas after outlier rejection they are 3.1 1 and 
0.281, respectively. If the second-largest observation had been 
4.77 we would have obtained 3.19 and 0.387, respectively. 
From this, two conclusions can be drawn that are true 
generally. The traditional procedure is (a) sensitive to the 
actual data values and (b) seriously underestimates the 
variance that is attainable in practice. The outliers in our 
dataset are only revealed because we have 24 replicates. 
Duplication might throw doubt on a value of 28.95, but it is 
very unlikely to do so on 5.28. On the other hand, estimating 
the variance by 28.1 is also unfair, as values as large as 28195 
might be spotted and are much rarer than 1 in 24. 
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Barnett and Lewis6 discussed the outlier problem in 
considerable detail and described a whole battery of outlier 
rejection tests. The change of emphasis from their first edition 
(1978) to the second edition (1984) reflects a change in 
statistical practice from outlier rejection to outlier accommo- 
dation. The prevailing philosophy is known as robust statistics 
(or, occasionally, as resistant statistics) and is expounded in a 
number of recent monographs,7-10 some of which are forbid- 
ding even to professional statisticians. 

Robust statistics have been used occasionally by chemists, 
especially in geochemistry.11-15 These papers concentrate on 
establishing reference values, whereas robust methods can be 
as useful in assessing variability as for central tendency. 

Philosophy of Robust Statistics 
The normal distribution pervades statistical methodology, and 
its very name suggests widespread applicability. Yet careful 
studies show that real errors do not fit the normal distribution! 
Users of statistics point to a theoretical result, the central limit 
theorem, to justify the assumption, whereas theoreticians 
believe its applicability to have been proved empirically. The 
central limit theorem is, of course, a perfectly correct result 
about sums of many small independent errors having (approx- 
imately) a normal distribution. The problem is that outliers 
result from single large errors. It is also generally accepted 
that real error distributions have “heavier tails” than the 
normal distribution, i.e., large deviations (in either direction) 
are more likely than under a normal distribution. One of the 
bases of robust statistics is to use procedures that work well for 
such distributions. 

The second basis is to protect against gross errors. We 
observed from our example that recording 28.95 rather than 
2.895 increased the sample mean considerably (to 4.28 from 
3.19). Recording 289.5 and 2895 would give 15.1 and 123.7, 
respectively. Hence the effect of a missing decimal point is 
disastrous for the mean. On the other hand, the median is 
almost unchanged, from 3.24 with 2.895 to 3.38 with any value 
greater than 3.40. This property is shared by a trimmed mean. 
Suppose we discard the smallest r and the largest r observa- 
tions out of the total, n, and then take the mean of the 
remainder. [This is called a (lOOr/n)(%) trimmed mean.] 
Discarding r = 1 and r = 2 gives estimates of the mean of 3.25 
and 3.21, respectively, both being insensitive to the actual size 
of 28.95. Trimmed means obey both principles of robust 
statistics; they are insensitive to small numbers of gross errors, 
and they work well for heavy-tailed distributions close to the 
normal. The mean fails the first of these, the median the 
second. 

The sample variance is even more sensitive to outliers than 
the sample mean, increasing from 0.46 (when 28.95 is replaced 
by 2.895) to 28.1. The inter-quartile range (IQR) is the 
difference between observations one quarter in from each 
end, the 6th and 19th in the present example, so IQR = 1.0. 
For a normal distribution the IQR would be expected to be 
about 1.350, which suggests that we determine 02 by (IQW 
1.35)2 = 0.55. Again this is insensitive to gross errors; it is in 
fact unchanged if 28.95 is replaced by 2.895 or 289.5. 

The trimmed mean and the IQR were developed in the days 
when all data were analysed by hand. Computers have allowed 
more sophisticated methods to be used. Many such proce- 
dures exist, but we will only describe some of the simplest 
which are known to perform well. A whole book16 has been 
devoted to comparisons of 68 procedures! The references 
disagree as to the best procedure, but all accept those 
described here as amongst the best. 

Measuring “True Values” 
Both the sample mean and median are estimates of the 
location of a distribution of results. This distribution can be 

- C  C 

Fig. 2. 
p(x) < x2 for large 1x1 

A robust loss function p. Note that p(x) = x2 for 1x1 d c, but 

considered as a “true value”, p, plus errors, and we want to 
find an estimate of p. We assume that p is the mean of the 
“reliable” results, but not of the whole error distribution, as in 
analytical chemistry the distribution of errors will almost 
always be asymmetric. Consider n data points xl, ..., x,. The 
sample mean minimises the sum of squares SS = X(xi  - p)2 
and this is the source of its sensitivity to gross errors as large 
errors inflate SS significantly. Suppose we minimise S S  = 
Cp(xi - p) where P(E) does not weight large errors, E, as much 
as ~ 2 .  A good choice is the function 

illustrated in Fig. 2 where 02 is a robust variance and c is a 
constant in the range 1-2. This penalises errors larger than co 
less severely than x2. The corresponding location estimate, $, 
is the mean of pseudo-values Ti 

xi if Ixi- $ 1  ~ c o  
f j =  p-co if x i < f i - c o  . .  . . (2) 

p+co if x j > p + c o  

1 if (xi  - F( s co 
wi = {coi lx, - fiI if Ixi - $1 > co 

{ 
and also the weighted mean of x i ,  with weights wi 

Hence extreme values can be thought of as being either 
brought in or downweighted. We can compute p from either of 
these properties. To start with take any estimate fi(”), say the 
mean or the median. At each stage compute fiG) as the 
weighted mean with weights min(l,co/lxi - (lU-1))) or as the 
mean of the values fi [with p = $Q- ”1. [The function min(x,y) 
denotes the smaller value of x and y,] The values PO) converge 
rapidly to p. 

The value of c = 1.5 has wide support. Suppose we knew o 
to be 0.70, then starting from the mean 

pG) = 4.28, 3.56, 3.27, 3.22, 3.21, ... 
and starting from the median 

= 3.39, 3.24, 3.21, ... 

It is usually unrealistic to assume that o is known, although 
only a rough estimate is needed, which might be available 
from past trials. One rough estimate is based on the median 
absolute deviation (MAD); MAD = median ( / x i  - medianl), 
6 = MAD/0.6745, which is similar to the re-scaled IQR, and in 
our example gives 6 = 0.53 and fi = 3.207. (The scale factor 
0.6745 is used to obtain the correct answer for normally 
distributed data.) More sophisticated estimates are considered 
later. However, this simple proposal is already very reliable. 
The corresponding estimator of location is sometimes known 
as A15. 
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Table 1. Values of the constants 1-3 and 0 for a range of cut-off values c. Further values can be obtained from 8 = 
P ( ( N (  < c), f3 = 0 + cZ(1 - 0) - 2c exp(-c2/2)/V2~1 where N is a standard normal deviate 

C 

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 
1-3 0.516 0.578 0.635 0.688 0.736 0.778 0.816 0.849 0.877 0.900 0.921 
8 0.683 0.729 0.770 0.806 0.838 0.866 0.890 0.911 0.928 0.943 0.954 

Measuring “Precision” 
If it is supposed that we are in the somewhat more realistic 
position of knowing p (say from a reference sample) and wish 
to estimate cr, then we could use the sample variance or the 
scaled IQR, or 

6, = median(lxj - p.))/0.6745 

A robust procedure is to solve 

c min(lxi - pl/a,c)2 = np . . . . (3) 

where again p is chosen to obtain the correct answer for 
normally distributed data. Some values of p are given in Table 
1. 

There are a number of ways to solve (3). One of the easiest 
is to compute a sequence of values 6.0’) with 6(0) = 6, and 

where 

xi if (x - p( < c d - 1 )  1 p+c6(.-1) if x i > p + t c r ( . - I )  

Suppose for dataset (1) that we knew that p. = 3.68 (which is 

z j= p.-c6.0’-1) if xi<p--&0‘-1) 

which converges rapidly to the solution of (3). 

the consensus of a much larger set of measurements), then 

6i = 0.911, 0.927, 0.934, 0.938, 0.939, 0.940, 0.941, ... 
so cr can be estimated by 0.941. Note that p62 is the variance of 
the pseudo-values ifi (with divisor n as p is known). 

Unknown “true value” 

The more sophisticated approach referred to in a previous 
section involves estimating cr alongside p.. Hence at each 
iteration we form pseudo-values ZL and compute their mean, X, 
and variance, s2. Then @(i) = X and 6(i) = d(s2/p). This is 
repeated until the values stabilise, starting from (median, 6m). 
The present example gives 

@ = 3.385 3.255 3.213 3.206 3.205 3.205 ... 3.205 
6 = 0.526 0.595 0.639 0.657 0.666 0.671 ... 0.674 

The following shows the insensitivity to the outlier(s): 
X(24) P 6 
28.95 3.205 0.674 
2.895 3.146 0.613 

289.5 3.205 0.674 

and in fact (@,6) do not depend on any of the exact values 
greater than @ + c6 = 4.22. Hence it is irrelevant whether the 
value 5.28 is considered an outlier or not; all that matters is 
that it exceeds 4.22. This combined estimator is known as H15 
or “Huber proposal 2.” 

When n, the number of observations, is small, a small- 
sample correction should be made. The variance of xi - @ will 
be about a2(n - l)/n and so the cut-off point, c, should be 
reduced to c V‘(1 - l/n) in forming the pseudo-values. This 
will be important in Part 2.17 (It reduces 6 to 0.662 in our 
example.) 

Discussion 
We have observed that robust procedures can be constructed 
to estimate the true value and precision of a set of data by 
relatively simple iterative calculations. These are very tedious 
to do manually but easy to program. (The longest part of the 
program will be to find the starting values, see Appendix.) 
The robust estimates are completely insensitive to how 
outlying the extreme data values are and obtain most of their 
information from the values in the centre of the dataset. 

The cut-off value c should in theory be chosen depending on 
how frequent outliers are thought to be, although it is safer to 
choose a smaller value of c if in doubt. About 1% of outliers 
suggest c = 2.0 and about 5% suggest c = 1.4. The value c = 
1.5 is widely used. The actual estimates obtained are not very 
sensitive to c: 

c = 1.0 15 2.0 
p = 3.229 3.205 3.234 
6 = 0.648 0.662 0.678 

If we really wanted to look for outliers to check them against 
the original records, a useful rule would be to check xi values 
outside @ k 26. In dataset (1) this suggests that all values 
greater than 4.53 would be checked. 

Use of robust estimates 

Some considerable care is needed in interpreting (i and 6. 
They do not estimate the mean and standard deviation of the 
observations (note, not the population), and this is an asset 
rather than a liability. Rare but very large outliers will affect 
the theoretical mean p considerably when, as in analytical 
chemistry, they will almost always occur in one direction. 
Instead we should regard p as measuring the mean of the 
“reliable” observations, a consensus value which is the nearest 
we can get to a “true value”. (This interpretation is only 
possible if the “reliable” observations form the majority. 
Examples do occur in which the outliers are the only valid 
observations, but no statistical procedure can redeem such a 
disastrous trial.) 

In a similar manner 6 measures the standard deviation of 
the “reliable” observations. If we take m replicates then the 
robust measure @ obtained from these will have a variance of 
about 62/m for moderate m. [In fact 62/m X (3 /CI2  where 8 = 
P([x l  - p I/a d c), where P is the probability, which can be 
estimated either from the normal distribution or by the 
proportion of the dataset with 2, = x,. As Table 1 shows, the 
correction factor p/W is only just larger than one.] However 
the (population) variance of one observation will usually much 
exceed 6 2 ,  as outliers cannot be downweighted. Duplicates 
also do not help, as we always find that (i = (x1 + x#2. At 
least three replicates are needed to allow downweighting, and 
this may not be sufficient unless cr is known a priori. If we had 
recorded just the three observations 2.9, 3.1 and 28.95, then 

Median = 3.1 6, = 0.297 
Mean = 11.65 s = 14.98 

A15 = 3.222 
H15 = 11.65 6 = 16.98 

There are two plausible explanations for this triple of 
observations. One, favoured by (A15, a,), is of two reliable 
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C 

C 
C 

C 
C 

1 0  

20 

30 

40 

5 0  

10 

20 

program rob1 

program from 'Robust S t a t i s t i c s  
Analyst 
(C) B . D . Ripley 

parameter (NMAX = 100)  
r e a l  x(NMAX) , w s  (NMAX) 
r e a l  median, h15 
integer  if n 
r e a l  xmed, xm, xs 
character name*50 
p r i n t  *, ' F i l e  name 
read ( a ) ,  , name 
open (1, file=name, s ta tus=,  oldf ) 
p r i n t  *, ' #  data points  
read *, n 
read (1, *) ( x ( i )  , i=l,n) 
close (1) 
xmed = median(x, n, w s )  
p r i p t  *, ,median ,xxned 
xm = a15(x, n, xs, w s )  
p r i n t  *, ,a15, sigma , xm, xs 
xm = hl5(x,  n, xs, w s )  
p r i n t  *, h15, sigma , xm, xs 
end 

r e a l  function median (x, n, w s )  
r e a l  x ( n ) ,  ws(*), v 
integer  if j ,  h, n, n2 
do 1 0  i = 1, n 

w s ( i )  = x ( i )  
h = l  
h = 3*h+l 
i f  (h .le. n) goto 20 
h = h/3 
do 50 i = h+l,  n 

v = w s ( i )  

i f  (ws(j-h) . le.  v) goto 5 0  
w s ( j )  = ws(j-h) 

i f  (j .gt. h) goto 40 
w s ( j )  = v 

j = i  

j = j-h 

i f  (h . g t .  1) goto 30 
n2 = n/2 
i f  (2*n2 .eq. n) then 

else 

endif 
end 

median = 0.5* (ws (n2) +ws (n2+1) ) 

median = ws (n2+1) 

r e a l  function smad(mu, x, n, w s )  
r e a l  median, mu, x(n)  , ws (*) 
r e a l  sm, sum 
integer  if n 
do 1 0  i = l , n  

ws (i) = abs ( x ( i )  -mu) 
s m  = median(ws, n, w s )  
i f  (sm . le. 0 . 0 )  then 

sum = 0.0 
do 20 i = 1, n 

sm = sum/n 
sum = sum + w s  (i) 

endif 

* Copyright of Professor B. D. Ripley 

Program* 

- How Not t o  Reject Outl iers '  

10 

20 

C 

10 

20 

smad = sm/0.6745 
end 

r e a l  function a15(x, n, xs, w s )  
r e a l  median, x ( n ) ,  w s  (*) 
r e a l  c, xm, xm0, xs, xs0, xc, sum 
in teger  if n 
data  c/1.5/  
xm = median(x, n, w s )  
xs = $mad(=, x, n, w s )  
xc = c*xs 
Xmo = xm 
sum = 0 . 0  
do 20 i = 1, n 

x m  = sum/n 
i f  (abs(xm-xmO) . g t .  (l.Oe-4)*xs) go t o  1 0  
a15 = xm 
end 

sum = sum + min(xmO+xc, max(xm0-xc, x ( i ) ) )  

r e a l  function h15(x, n, xsc, w s )  
r e a l  median, x(n)  , w s  (*) , xsc 
r e a l  a ,  beta,  c,  c l ,  xm, xm0, xs, xs0, xc, sum, sum2 
integer  if n 
data  c, beta /l.S, 0 . 7 7 8 /  
c l  = c without small-sample correction 
c l  = c * sqrt(l .O-l .O/n) 
xm = median(x, n, w s )  
xs = smad(xm, x, n, w s )  
xmo = xm 
xso = xs 
sum = 0 . 0  
sum2 = 0 . 0  
xc = cl*xs 
do 20 i = 1, n 

a = min(xm+xc, max(xm-xc, x ( i ) ) )  
sum = sum + a 
sum2 = sum2 + (a-=)*(a-xm) 

xm = sum/n 
xs = s q r t  (sum2/ (beta* (n-1) ) ) 
i f  ((abs(xm--0) .gt. l.Oe-Q*xsO) .or. 

h abs(xs/xsO-1.0) . ~ .  1 .0e -4 )  go t o  1 0  
h15 = xm 

end 
xsc = xs 

observations plus one outlier. On the other hand, (H15, 6) 
regards the sample as three variable observations. We know 
only from other data which explanation is correct. 

N o  statistical method can make sense of disastrous trials. 

Abbey14 quoted 31 determinations of the nickel content 
(pg g-l) of Canadian syenite rock: 

5.2 6.5 6.9 7 7 7 7.4 8 8 8 8 8.5 9 9 10 
11 11 12 12 13.7 14 14 14 16 17 17 18 24 28 34 125 
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which gives 
Mean = 16.01 s = 21.27 

Median = 11.00 6m = 4.45 
A15 = 11.55 
H15 = 11.70 6 = 5.19 

suggesting a standard error of the robust mean of ca. 1.0 (= 
6h’rn). Abbey quoted other robust estimators of p, but all 
agreed to within the (considerable) uncertainty. However, 
this uncertainty is so large that very little has been learnt from 
31 determinations. 

In general, outliers are not a problem when data are looked 
at carefully. Increasingly data are not looked at at all. They are 
recorded in machine-readable form and summarised by 
computer programs. In such circumstances robust statistics 
are preferable to conventional ones, and a marked difference 
between them should give a warning that the data should be 
examined carefully. 

Appendix 
Computation 

The exact form of the algorithms used to calculate robust 
estimates can be deduced from the FORTRAN 77 program 
shown. They cover the most general case of unknown p and 0, 
but are easily modified to handle other instances. 

Medians are found by sorting the data by the sort algorithm 
of Shell.18 There are ways to find medians without sorting that 
will be faster for large values of n,  but these are considerably 
more awkward to program correctly. One other difficulty is 
that 6, could turn out to be zero, but only if half the data are 
equal to the median. In that instance we would report 2lxi - 
medianlh, which is zero only if all the data are equal to the 
median. 

The programs use a common workspace (ws) which should 
be as large as the data array. One trap for the unwary: median 

1697 

and H15 are real qualities, despite the implicit rules of 
FORTRAN. To aid translation to other languages, all variables 
used are declared. NMAX can be set as required. 

Professor Peter Rousseeuw’s comments were most helpful in 
clarifying an earlier draft. 
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